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Abstract

Developing a robust, intelligent design tool for multivariate optimization of multi-phase transport in fuel cell diffusion media (DM) is of utmost
importance to develop advanced DM materials. This study explores the development of a DM design algorithm based on artificial neural network
(ANN) that can be used as a powerful tool for predicting the capillary transport characteristics of fuel cell DM. Direct measurements of drainage
capillary pressure—saturation curves of the differently engineered DMs (5, 10 and 20 wt.% PTFE) were performed at room temperature under
three compressions (0, 0.6 and 1.4 MPa) [E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1295-B1304; E.C.
Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1305-B1314; E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem.
Soc. 154(12) (2007) B1315-B1324]. The generated benchmark data were utilized to systematically train a three-layered ANN framework that
processes the feed-forward error back propagation methodology. The designed ANN successfully predicts the measured capillary pressures within
an average uncertainty of £5.1% of the measured data, confirming that the present ANN model can be used as a design tool within the range of
tested parameters. The ANN simulations reveal that tailoring the DM with high PTFE loading and applying high compression pressure lead to a
higher capillary pressure, therefore promoting the liquid water transport within the pores of the DM. Any increase in hydrophobicity of the DM is

found to amplify the compression effect, thus yielding a higher capillary pressure for the same saturation level and compression.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Proper selection of the fuel cell diffusion media (DM) design
criteria is critical to achieve high fuel cell performance and
durability, since the porous DM plays a deterministic role in
establishing an effective micro-fluidic management in fuel cell
operations [1-5]. To date, fuel cell manufacturers have invested
considerable resources towards developing advanced DM mate-
rials with favorable internal architectures that will assist in
resolving the water management issue. However, these efforts
generally rely on trial-and-error approaches and require exten-
sive testing programs due to the lack of benchmark data required
to precisely couple the capillary transport processes with the
internal structure of the porous DM.
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The fuel cell DM is typically made of carbon—fiber-based
products, such as non-woven carbon paper and woven cloth that
have a non-uniform pore distribution. Because of the hydrophilic
nature of these randomly packed carbon fibers, the DM sub-
strates are impregnated with an anisotropic coating of PTFE,
thereby yielding mixed wettability characteristics with bi-modal
configuration [6—10]. The liquid water transport within the pores
of the DM is mainly governed by capillary action, and phase
change; hence in pore-level modeling studies, the DM is com-
monly modeled as a bundle of tortuous capillary tubes with
variable radius [11,12]. In the capillary transport mode, the driv-
ing force is created by the local capillary pressure gradient,
which is a strong function of water saturation, pore wettabil-
ity and pore size [13]. Any change in pore morphology due to
the possible change in PTFE content or fuel cell assembly com-
pression will directly affect the local capillary pressure, thus
resulting in a different water distribution [7,14—17]. Therefore,
probing the change in the capillary pressure as a function of cell
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compression and PTFE loading of the DM is critical in terms of
precisely quantifying the liquid water inside the DM.

Due to the inherent structural complexity of the DM and
the apparent experimental limitations, most DM characteriza-
tion studies rely on modeling efforts that are limited by the
dubious correlations adopted from soil science. More impor-
tantly, these mathematically complex models serve to provide
qualitative connection between the cell performance and the
transport process. An excellent review of the recent model-
ing efforts is provided by Djilali [18]. However, in terms of
design and optimization, the essential goal should be to pro-
vide a reliable tool that can precisely correlate the governing
input—output relationship of the system. One way to achieve
such a tool is to construct a non-parametric framework trained
by actual benchmark data. To date, the increasing demand of
such a design tool for PEFC materials has motivated the use of
various approaches to achieve this goal. The artificial neural net-
work (ANN) approach has emerged as a strong candidate, since
it offers an alternative way to tackle complex and ill-defined
problems with its excellent multi-dimensional mapping capa-
bility [19]. Recently, a few ANN studies [20-26] focused on
prediction of the fuel cell performance based on experimental
data or model simulations have been reported, however to the
best of authors’ knowledge, no direct study focused on predict-
ing the capillary transport behavior of the fuel cell DM using
ANN has been performed.

In terms of methodology, ANN systems simulate small indi-
vidual interconnected adaptive units called neurons, which are
inspired from biological neurons. These artificial neurons are
designed to learn the system behavior based on external or
internal information, which is fed through the network [27].
The network is composed of interconnected layers in which the
clusters of artificial neurons carry information. Learning occurs
through a training process where the relations between each layer
are correlated and adjusted based on the supplied stream of infor-
mation [28]. The unique feature of these trained networks is to
accurately correlate the complex interrelated parameters of the
system simply by ignoring the excess data that are of minimal
significance [19]. This feature eliminates the need for detailed
information about the system, thus enabling the network to han-
dle large and complex systems. More detailed explanation of
ANN systems is provided in Refs. [19,27,28].

This study addresses the development of a DM design tool
using artificial neural network and newly available direct bench-
mark data [6-8] to describe the capillary pressure—saturation
relationship in various fuel cell DMs. Direct drainage capillary

Table 1
Material properties of the tested DM samples

pressure—saturation data have been generated for SGL 24 series
DMs coated with different PTFE loadings (5, 10 and 20 wt.%)
under three different compression loadings (0, 0.6 and 1.4 MPa).
The detailed descriptions of our experimental approach and
major findings have been documented in a series of publications
[6-8]. The benchmark data compiled from these experiments
have been integrated into the three-layered ANN that processes
the feed-forward error back propagation methodology. The net-
work was systematically trained with the novel benchmark data,
and then utilized to delineate the relative significance of PTFE
content and compression on the capillary pressure of this class
of DM materials, within the range of tested parameters.

2. Method of approach
2.1. Experimental approach and data description

SGL 24 series (SIGRACET® gas diffusion layers) carbon
paper DMs, namely SGL 24BC (5% PTFE), SGL 24CC (10%
PTFE) and SGL 24DC (20% PTFE) were utilized in the bench-
marking experiments [6—8]. The tested DM samples are treated
with PTFE (hydrophobic agent) from 5 to 20 wt.% of total, which
is in a typical hydrophobic treatment range preferred in conven-
tional fuel cell applications. The base macro-porous substrate of
the tested carbon paper DM samples is coated with a 50 pm thin
micro-porous layer (MPL) of carbon black mixed with PTFE. In
terms of hydrophobicity of the MPL, it was found in Ref. [6] and
by Gostick et al. [29] that the micro-porous layer contains con-
siderably fewer hydrophilic pores; therefore it is almost exclu-
sively hydrophobic in nature. However, the exact value of the
PTFE treatment during the processing of this thin micro-porous
layer has not been publicly disclosed by the manufacturer. The
material properties of the tested composite DM samples, as
supplied by the manufacturer, are provided in Table 1.

To date, different techniques [4,30,31] have been used
for measurement of the capillary saturation behavior of the
fuel cell DM. Lin and Nguyen [4] measured the capil-
lary pressure—saturation using a volume displacement method,
whereas Acosta et al. [30] determined the imbibition and
drainage curves via a mercury intrusion technique. Recently,
Fairweather et al. [31] has reported a micro-fluidic device spe-
cially designed to measure the capillary pressure—saturation
curves of the fuel cell DM during liquid and gas intrusion. In
this study, a new technique, the method of standard porosime-
try (MSP), was employed to measure the desired transport
parameters such as capillary pressure, saturation, pore size, and

Material Type Thickness (pm) PTFE (wt.%) (macro-substrate) Porosity Permeability (cm® cm™2s~1)
SGL 24BC Paper w/MPL 235 5 0.76 0.60
SGL 24CC Paper w/MPL 235 10 0.75 0.60
SGL 24DC Paper w/MPL 235 20 0.75 0.45

All values are adapted from manufacturer technical specification sheets. The same types of DMs (i.e., SGL 24 Series) have been utilized in benchmarking experiments
in order to eliminate any possible uncertainties associated with the fabrication processes of these materials. Note that the values of porosity, permeability, and PTFE
content given in Table 1 represent the material properties of the tested macro-fuel cell diffusion media substrate (i.e., macro-DM without MPL).
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hydrophobic and hydrophilic porosity distribution. The use of
this technique to measure the desired capillary transport prop-
erties of the fuel cell DM has been also reported by Gostick
et al. [29]. The MSP is a reliable and established technique
used for acquiring the necessary data regarding the capillary
pressure—saturation behavior of porous materials [32]. This tech-
nique is based on a capillary equilibrium process and developed
by Porotech Ltd. In these experiments, the DM samples were
placed in capillary contact between two standard samples hav-
ing a known capillary pressure—saturation curve [32]. At each
equilibrium the corresponding capillary pressure and satura-
tion values of the tested DM samples were measured based on
the known capillary pressure—saturation characteristics of the
standard samples [32]. Different liquids (de-ionized water and
octane) were utilized as working fluids to evaluate the mixed
wettability characteristics of DMs samples over a set of different
compressions and PTFE loadings.

When MSP technique is compared with the traditional
mercury intrusion porosimetry (MIP), mercury intrusion
porosimetry is limited in that it is incapable of distinguishing
the hydrophobic and hydrophilic pore distribution (dual pore
network), and requires high pressures which can lead to a sub-
stantial deformation of the porous fuel cell DM structure [32].
These limitations are directly eliminated with the use of MSP.
Since the MSP technique is based on the natural capillary equi-
librium concept, the measurement with this technique does not
require any external pressure. In addition, MSP enables pre-
cise measurements over a large range of pore sizes of different
materials including soft or frail materials under different com-
pression and temperatures [32]. A detailed description of this
technique and the measured specific morphological character-
istics for the tested DM samples are provided in Ref. [32] and
[6-8], respectively.

The benchmarking experiments were performed for the DM
samples given in Table 1 under different levels of compression
loadings, i.e., 0, 0.6 and 1.4 MPa to capture the corresponding
changes in the pore configuration and the transport properties of
the tested DM samples (i.e., capillary pressure, saturation, poros-
ity, bi-modal pore distribution and pore size). The measured
capillary pressure data were compiled in a database and then
categorized corresponding to the measured saturation, PTFE
content of the DM and the operating compression. While MSP
can not fully characterize the imbibition/drainage cycling (hys-
teresis effect) which the fuel cell DM could be exposed to under
dynamic conditions, this technique is capable of measuring the
drainage capillary pressure—saturation curves of the tested fuel
cell DM samples. The capillary drainage flow characteristics of
the hydrophobic pore network captured by the MSP technique
are considered essential, since the hydrophobic pores form the
flow pathways (conduits) for the liquid water to diffuse through
the DM.

2.2. Neural network design and training
A feed-forward error back propagation neural network has

been constructed for this study. The architecture of ANN consists
of a three-layered network equipped with the tangent-sigmoid

and log-sigmoid activation functions in hidden layers and a lin-
ear transfer function in the output layer to capture the highly
non-linear relationship between the input and output parameters.
The optimum number of neurons in the hidden layers has been
determined based on a trial-and-error approach. A total num-
ber of 30 neurons, 10 neurons in each layer, have been found
to be most suitable neuron configuration for the present ANN
pattern. The input layer has been configured to include four
correlated input parameters based on the non-wetting phase sat-
uration, the compression pressure and the PTFE content of the
DM, whereas the output layer is designed for one parameter, “the
capillary pressure”, which is a governing parameter for the capil-
lary transport mechanism in DM. Note that the effects of relative
and intrinsic permeability are also important for fully describ-
ing the capillary transport within the porous fuel cell DM, but
are beyond the scope of this study. As noted previously, when
the capillary-induced transport in fuel cell DM is analyzed, the
driving force is created by the local capillary pressure gradient,
which is a strong function of water saturation, pore wettability
(PTFE effect) and pore size (compression effect). Therefore, in
this study, the main focus is placed on predicting the capillary
pressure as a function of these specified parameters (i.e., satu-
ration, PTFE content and fuel cell compression pressure). The
method of approach and the schematic of the proposed network
structure are presented in Fig. 1.

The connections between the sub-layers of the present neu-
ral network are represented by the weights or so-called synaptic
connections, which are calibrated by feeding the network with
a suitable set of training data. This supervised training mode
allows the network to modify the connection weights and learn
the intricate representation of the specified input parameters with
respect to the desired outputs [27]. In the present feed-forward
ANN model, the information supplied by the input parameters
flows through the forward direction from input nodes to the
output node, while the transferred information is systematically
adjusted by the assigned weights. For each input-data set, the
associated error has been calculated and then back propagated
through the network layers to continuously update the weights.
After performing sufficient cycle of supervised training, the
network has achieved the ability to identify the appropriate
input—output connections and an optimum match with the output
data has been obtained.

2.3. Network validation

A total of 340 data sets were utilized in the training and test-
ing phase of the present ANN model. Among these data set, 290
data sets were randomly chosen and implemented as a training
set, while the remaining 50 data sets were utilized as a test set
for cross-validation to improve the learning process. During the
supervised training process, the associated learning error rate
(mean-squared error) was minimized by increasing the num-
ber of training epochs (cycles). However, an optimal number
of training epochs need to be determined in order to avoid any
possible overtraining of the network. A total number of 3750
epochs were determined to be the optimum number of train-
ing cycles for the present ANN structure and the corresponding
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Fig. 1. (a) Method of approach including: MSP experiments, testing conditions, and tested DM samples [6-8] and (b) the schematic of the feed-forward neural

network architecture designed for this study.

mean-squared error (relative error between the network output
and target value) was found to be 3.4 x 1073 at the end of 3750
training epochs. Fig. 2 shows the training epoch cycles versus
the calculated mean squared error of the supervised training
and the comparison of input benchmark data and corresponding
ANN predictions for the training process. After the best learning
performance was obtained with the specified training scheme,
a detailed comparison of the experimental data with the ANN
predictions based on discrete input data set (different than the
data set used in training process) was performed for the tested
DM samples to evaluate the prediction quality of the designed
neural network.

Fig. 3a shows the measured and ANN prediction of capillary
pressure versus non-wetting phase saturation for the DM sam-
ples SGL 24BC (5 wt.% of PTFE) and SGL 24DC (20 wt.% of
PTFE) under no compression. Recalling that the benchmark data
were generated for the DM samples coated with micro-porous
layer, the nature of the capillary pressure—saturation curves
shown in Fig. 3 exhibits a continuous “S” shape, indicating the
highly non-linear relationship between the capillary pressure and
the saturation of the tested bi-layered DM samples. The ANN
predictions appear to successfully follow the complex shape
of the measured capillary pressure within an average uncer-
tainty of £5.1% of the measured data over the entire saturation
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domain (0 <spy < 1). This indicates that the designed network
can accurately capture the corresponding change in the measured
capillary pressures in response to the increase in PTFE content
of the DM. The comparison was also performed for the tested
DM samples under different compressions. Fig. 3b represents
the comparison of measured capillary pressure and the ANN
prediction for SGL 24BC (20 wt.% of PTFE) DM exposed to 0
and 1.4 MPa compression (two measurement boundaries). The
present ANN model successfully performs the necessary adjust-
ments to predict the capillary pressure in response to the change
in compression, thereby precisely capturing the measured cap-
illary pressures within an average uncertainty of £4.8% of the
measured data in the entire saturation range, even in the high
capillary pressure zone (spy >0.7) which is governed by the
hydrophobic micro-porous layer [3-5] (Fig. 3b).

2.4. Empirical correlation and ANN implementation

Recently, our group has published three papers [6—8] that are
devoted to developing a validated capillary pressure—saturation
relationship (for drainage in hydrophobic pores) appropriate
for the tested fuel cell DM materials. The unified capillary
pressure—saturation correlation presented in the final part of this
paper series [8] was deduced from the same extensive benchmark
data that has also been used in this study to train the designed
artificial neural network. In our previous study [8], a multi-
dimensional linear regression model was employed to determine
the best polynomial fit that correlates the capillary pressure with
the relevant non-dimensionalized experimental parameters. In
order to improve the precision of the empirical correlation and
eliminate the potential uncertainty associated with the complex
shape of the capillary pressure—saturation curves, the overall
saturation domain was divided into three regions. The charac-
teristic capillary pressure—saturation equation derived for these
tested DM samples was suggested as follows [8]:
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Fig. 2. (a) Training epoch cycles vs. calculated mean square error of the super-
vised training for the designed ANN and (b) comparison of actual input data
and corresponding ANN predictions for the training data set.

section, existing fuel cell models [33,34] are already computa-
tionally complex, and somewhat limited by assumptions and
correlations. Moreover, these models are mostly constructed by
isolating a certain physical mechanism from the overall complex
transport scheme to avoid additional mathematical complex-
ity. There is still too much uncertainty involved to achieve the
goal of a completely predictive whole-cell multi-phase tran-
sient model. In addition, when the design and optimization

(Wt.%) [0.0469 — 0.00152(wt.%) — 0.0406s2,, + 0.143s3 ] +0.0561 Inspy, 0 < spy < 0.50

K(s) =

(Wt.%) [1.534 — 0.0293(Wt.%) — 12.6852,, + 18.82453.] +3.416Ins0y  0.50 < sy < 0.65

(Wt.%) [1.7 — 0.0324(Wt.%) — 14.152, +20.953.] +3.79Inspy  0.65 < spy < 1.00

where C, g, k, and y represent the compression pressure, com-
pressed porosity, absolute permeability and surface tension. The
parameters in K(spy) namely; (wt.%) and sy, are PTFE weight
percentage and non-wetting liquid saturation, respectively. Note
that the porous media of interest herein is a composite structure.
The capillary pressure—saturation curves of the DM macro-
substrate (without MPL) can be extracted from the overall
behavior of the composite structure by using the correspond-
ing the pore size distribution and porosities of the macro- and
micro-substrate (MPL), as also discussed in Refs. [6-8,29].

As shown in Eq. (1), the given empirical correlation is highly
non-linear, introducing additional complexity when used in an
advanced computational model. As also noted in the introduction

are considered from a manufacturer’s perspective, there are
other parameters such as material properties, application type,
binder and fiber type, labor and manufacturing cost that need
to be accounted for in the computational framework. How-
ever, identifying the relevant physical connections between these
manufacturing variables and the other relevant transport proper-
ties is extremely difficult, and complicates the task of designing
such a tool based on a conventional CFD model.

As such, this study is devoted to introducing an alternative
approach based on artificial neural network that can effectively
correlate all these complex variable in one domain in the absence
of physical connections [27,28]. As a first step of development
of such a design tool, we have analyzed the effectiveness of
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implementation of ANN to characterize the capillary transport
of the fuel cell DM.

3. Results and discussions

The well-known limitation of the ANN system is its insuf-
ficient capability of performing extrapolations [27,28]. Since
the learning mechanism is achieved by training the network
with the specified data set, the neural network can only rep-
resent the characteristic patterns of the given data points. When
the data point of interest is beyond the range of original train-
ing data set, the response (prediction) of the trained network
exhibits unpredictable performance, yielding significantly low
accuracy. In order to minimize the impact of this limitation, the
benchmarking experiments [6—8] have been performed at well-
designed test conditions, which cover the typical hydrophobic
treatment range of the fuel cell DM (5-20 wt.% of PTFE) and
the assembly compression pressure range (0—1.4 MPa) typically
encountered in fuel cell applications. Therefore, recalling that
the experiments described herein were performed at 0, 0.6 and
1.4 MPa for the DM samples treated with different PTFE con-
tent (5, 10 and 20 wt.%), in the present study, the main effort
is focused on evaluating the relative significance of PTFE con-
tent and compression of the DM on the capillary pressure at the
intermediate testing conditions within the range of tested param-
eters (i.e., 5% < PTFE <20% and 0 < C < 1.4 MPa), in which the
experimental data are not available.

3.1. Degree of mixed wettability

The degree of PTFE loading in DM plays a deterministic role
in the capillary transport mechanism, since any increase in PTFE
loading facilities the water removal rate from the pores, therefore
leading to a considerable reduction in the water retention (water
storage) capacity of the DM. In order to elucidate the relative
significance of PTFE content, the designed ANN was simulated
to predict the capillary pressure as a function of PTFE loading of
the DM at different saturations. Fig. 4 shows the predicted cap-
illary pressure versus % PTFE content of the DM at different
saturations (i.e., 0.1, 0.2, 0.3 and 0.4) under two different com-
pressions, namely 0.3 MPa and 0.9 MPa (i.e., the intermediate
conditions for which the experimental data are not available).
As seen in both Fig. 4a and b, the predicted capillary pressure
follows an increasing trend with an increase in PTFE content
for all saturations, however it exhibits relatively higher increase
for high saturations (i.e., spw=0.3 and 0.4). In other words,
the sensitivity of the capillary pressure on the hydrophobicity
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appears to increase with saturation, in a good agreement with
the experimental observations presented in Refs. [6—8]. This can
be attributed to the strong dependence of capillary pressure on
the local water content of the pore and the hydrophobicity of the
pore matrix. Physically, at pore level, any increase in the liquid
saturation leads to an increase in the liquid pressure, which is
directly proportional to the capillary pressure. In addition, ren-
dering the pore surface more hydrophobic distorts the molecular
force balance at the line of contact, forcing the liquid water to
move towards an unstable state, which in turn, leads to a higher
capillary pressure within the pore.

3.2. Compression loading

The designed ANN algorithm was utilized to delineate
the response of the capillary pressure to any change in the
compression pressure applied on the DM. Fig. 5 shows the
predicted capillary pressure versus % PTFE content of the
DM at constant saturations (spw=0.1 and s,y =0.3) under
different compression conditions ranging from 0 to 1.4 MPa
with an increment of 0.3 MPa (i.e., the intermediate condi-
tions for which the experimental data are not available). The
ANN simulations reveal that for a given PTFE loading, the
capillary pressure is prone to increase in parallel with an
increase in compression. The increase in capillary pressure
with compression can be attributed to the corresponding reduc-
tion in pore size, which can be explained through the Young—
Laplace theorem. The Young—Laplace theorem (Eq. (2)) corre-

lates the capillary pressure for a cylindrical pore in terms of pore
radius, surface tension and contact angle:

_ 2ycosf

Pc @)

r

where Pc, y, 0 and r represent the capillary pressure, surface
tension, contact angle and pore radius, respectively. Based on the
theoretical description given in Eq. (2), applying compression
on the DM reduces the available pore volume and consequently
decreases the pore radius, therefore leading to a higher capillary
pressure.

One other observation that can be drawn from Fig. 5 is that
the increase in capillary pressure with compression exhibits
dissimilar behaviors in different compression ranges for dif-
ferent saturation cases. For the low saturation case (spw =0.1)
as shown in Fig. 5a, the capillary pressure appears to increase
almost linearly with compression (diminishing importance) for
any specified PTFE content within the simulated compression
range (from O to 1.4 MPa). However, for the higher saturation
case (spw =0.3), the increase in capillary pressure with com-
pression is more pronounced between an uncompressed and
0.6 MPa compression condition, especially for DMs having %
PTFE content higher than 10%. Any further increase in com-
pression pressure from 0.6 to 1.4 MPa seems to have relatively
less effect on the predicted capillary pressure (Fig. 5b), which is
in good agreement with our previous experimental observations
[6-8].

As shown in Fig. 5b, for the DM coated with 15% PTFE,
the predicted capillary pressure exhibits a 26% increase with
an increase in compression from 0 to 0.6 MPa, whereas a 7%
increase of the capillary pressure is predicted as the compres-
sion is further increased from 0.6 to 1.4 MPa. This behavior can
be linked to the relatively higher spread out of the hydrophilic
sites compared to the hydrophobic ones within this compression
range. Any further increase in compression from 0.6 MPa seems
to promote the dispersion of more hydrophilic sites, producing
higher hydrophilic surface area. As a result, the expansion of
the hydrophilic sites with compression enhances the hydrophilic
characteristic of the DM, impeding the increase in capillary pres-
sure within the pore matrix, which is in good agreement with
the observations reported by Bazylak et al. [16].

3.3. PTFE and compression: coupled effect

As described in previous sections, both PTFE loading of the
DM and compression have strong influences on the capillary
pressure. However, the engineering consequences of increas-
ing PTFE content and compression should be systematically
optimized in order to minimize the additional losses introduced
by these parameters. For that purpose, the relative significance
of these parameters on the capillary transport characteristics of
the DM was investigated. The present neural network was uti-
lized to determine the capillary pressure as a function of PTFE
loading and compression pressure. Fig. 6 depicts the capillary
pressure predictions of the ANN simulations as a function of
compression pressure at different PTFE loadings for a specified
saturation (spw =0.3). As seen from Fig. 6, the effect of com-
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Fig. 6. ANN prediction of capillary pressure vs. compression pressure of DMs
treated with different PTFE loadings at constant saturation of 0.3.

pression on the capillary pressure is observed to be amplified
with an increase in PTFE loading of the DM. This suggests
that from capillary transport perspective, tailoring the DM with
higher PTFE loading and applying high compression would lead
to a higher capillary pressure at a given saturation, therefore pro-
moting the liquid water transport within the pores of the DM.
However, in terms of system efficiency, increasing PTFE load-
ing of the DM would introduce an additional electrical loss, and
applying high compression may cause permanent deformation,
therefore facilitating the degradation mechanism, which is not
desirable in terms of longevity and durability.

4. Conclusions

An artificial neural network was designed and trained
with the benchmark data generated from the -capillary
pressure—saturation measurements [3—5] of SGL 24 series car-
bon paper DMs treated with different PTFE undergoing various
compression loadings. The detailed comparison of the ANN
predictions with the experimental data was performed. The
results confirm that ANN predictions are consistent with those
obtained from experimental analysis [6—8], yielding an average
uncertainty of £5.1% of the measured data. After performing
validation, the present neural network algorithm was utilized
to predict the response of the change in capillary pressure of
the DM as a function of PTFE loading and compression at
intermediate conditions, where the experimental data are not
available.

The ANN simulations show that the capillary pressure is
prone to increase in parallel with the PTFE loading of the DM
and the applied compression pressure, especially within the
compression range of 0—0.6 MPa. Any further increase in com-
pression above 0.6 MPa appears to have relatively less impact
on the capillary pressure due to the relatively higher dispersion
of the hydrophilic sites within the compression range from 0.6
to 1.4 MPa. Furthermore, any increase in hydrophobicity of the
DM is found to amplify the compression effect, yielding a higher
capillary pressure, possibly because of the reduction in effec-
tive pore size and enhanced molecular imbalance at the phase
interface.

The artificial intelligence model presented herein can be fur-
ther extended into a more detailed design algorithm that couples
the DM internal architecture with the cell performance, manu-
facturer variables and operating conditions as more benchmark
data are available. Such a tool can potentially reduce the number
of experiments required and provide improved means of select-
ing the optimum electrode configurations suitable for different
fuel cell operations. Our team is rapidly expanding the existing
database. The development of an advanced design tool based on
this framework is ongoing work in our laboratory and will be
reported in subsequent publications.
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