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bstract

Developing a robust, intelligent design tool for multivariate optimization of multi-phase transport in fuel cell diffusion media (DM) is of utmost
mportance to develop advanced DM materials. This study explores the development of a DM design algorithm based on artificial neural network
ANN) that can be used as a powerful tool for predicting the capillary transport characteristics of fuel cell DM. Direct measurements of drainage
apillary pressure–saturation curves of the differently engineered DMs (5, 10 and 20 wt.% PTFE) were performed at room temperature under
hree compressions (0, 0.6 and 1.4 MPa) [E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1295–B1304; E.C.
umbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154(12) (2007) B1305–B1314; E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem.
oc. 154(12) (2007) B1315–B1324]. The generated benchmark data were utilized to systematically train a three-layered ANN framework that
rocesses the feed-forward error back propagation methodology. The designed ANN successfully predicts the measured capillary pressures within
n average uncertainty of ±5.1% of the measured data, confirming that the present ANN model can be used as a design tool within the range of

ested parameters. The ANN simulations reveal that tailoring the DM with high PTFE loading and applying high compression pressure lead to a
igher capillary pressure, therefore promoting the liquid water transport within the pores of the DM. Any increase in hydrophobicity of the DM is
ound to amplify the compression effect, thus yielding a higher capillary pressure for the same saturation level and compression.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Proper selection of the fuel cell diffusion media (DM) design
riteria is critical to achieve high fuel cell performance and
urability, since the porous DM plays a deterministic role in
stablishing an effective micro-fluidic management in fuel cell
perations [1–5]. To date, fuel cell manufacturers have invested
onsiderable resources towards developing advanced DM mate-
ials with favorable internal architectures that will assist in
esolving the water management issue. However, these efforts
enerally rely on trial-and-error approaches and require exten-

ive testing programs due to the lack of benchmark data required
o precisely couple the capillary transport processes with the
nternal structure of the porous DM.

∗ Corresponding author. Tel.: +1 814 865 0060; fax: +1 814 863 4848.
E-mail address: mmm124@psu.edu (M.M. Mench).
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The fuel cell DM is typically made of carbon–fiber-based
roducts, such as non-woven carbon paper and woven cloth that
ave a non-uniform pore distribution. Because of the hydrophilic
ature of these randomly packed carbon fibers, the DM sub-
trates are impregnated with an anisotropic coating of PTFE,
hereby yielding mixed wettability characteristics with bi-modal
onfiguration [6–10]. The liquid water transport within the pores
f the DM is mainly governed by capillary action, and phase
hange; hence in pore-level modeling studies, the DM is com-
only modeled as a bundle of tortuous capillary tubes with

ariable radius [11,12]. In the capillary transport mode, the driv-
ng force is created by the local capillary pressure gradient,
hich is a strong function of water saturation, pore wettabil-

ty and pore size [13]. Any change in pore morphology due to

he possible change in PTFE content or fuel cell assembly com-
ression will directly affect the local capillary pressure, thus
esulting in a different water distribution [7,14–17]. Therefore,
robing the change in the capillary pressure as a function of cell

mailto:mmm124@psu.edu
dx.doi.org/10.1016/j.jpowsour.2007.10.059
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ompression and PTFE loading of the DM is critical in terms of
recisely quantifying the liquid water inside the DM.

Due to the inherent structural complexity of the DM and
he apparent experimental limitations, most DM characteriza-
ion studies rely on modeling efforts that are limited by the
ubious correlations adopted from soil science. More impor-
antly, these mathematically complex models serve to provide
ualitative connection between the cell performance and the
ransport process. An excellent review of the recent model-
ng efforts is provided by Djilali [18]. However, in terms of
esign and optimization, the essential goal should be to pro-
ide a reliable tool that can precisely correlate the governing
nput–output relationship of the system. One way to achieve
uch a tool is to construct a non-parametric framework trained
y actual benchmark data. To date, the increasing demand of
uch a design tool for PEFC materials has motivated the use of
arious approaches to achieve this goal. The artificial neural net-
ork (ANN) approach has emerged as a strong candidate, since

t offers an alternative way to tackle complex and ill-defined
roblems with its excellent multi-dimensional mapping capa-
ility [19]. Recently, a few ANN studies [20–26] focused on
rediction of the fuel cell performance based on experimental
ata or model simulations have been reported, however to the
est of authors’ knowledge, no direct study focused on predict-
ng the capillary transport behavior of the fuel cell DM using
NN has been performed.
In terms of methodology, ANN systems simulate small indi-

idual interconnected adaptive units called neurons, which are
nspired from biological neurons. These artificial neurons are
esigned to learn the system behavior based on external or
nternal information, which is fed through the network [27].
he network is composed of interconnected layers in which the
lusters of artificial neurons carry information. Learning occurs
hrough a training process where the relations between each layer
re correlated and adjusted based on the supplied stream of infor-
ation [28]. The unique feature of these trained networks is to

ccurately correlate the complex interrelated parameters of the
ystem simply by ignoring the excess data that are of minimal
ignificance [19]. This feature eliminates the need for detailed
nformation about the system, thus enabling the network to han-
le large and complex systems. More detailed explanation of
NN systems is provided in Refs. [19,27,28].

This study addresses the development of a DM design tool

sing artificial neural network and newly available direct bench-
ark data [6–8] to describe the capillary pressure–saturation

elationship in various fuel cell DMs. Direct drainage capillary

c
t
t
p

able 1
aterial properties of the tested DM samples

aterial Type Thickness (�m) PTFE (wt.%

GL 24BC Paper w/MPL 235 5
GL 24CC Paper w/MPL 235 10
GL 24DC Paper w/MPL 235 20

ll values are adapted from manufacturer technical specification sheets. The same type
n order to eliminate any possible uncertainties associated with the fabrication proces
ontent given in Table 1 represent the material properties of the tested macro-fuel cel
r Sources 176 (2008) 191–199

ressure–saturation data have been generated for SGL 24 series
Ms coated with different PTFE loadings (5, 10 and 20 wt.%)
nder three different compression loadings (0, 0.6 and 1.4 MPa).
he detailed descriptions of our experimental approach and
ajor findings have been documented in a series of publications

6–8]. The benchmark data compiled from these experiments
ave been integrated into the three-layered ANN that processes
he feed-forward error back propagation methodology. The net-
ork was systematically trained with the novel benchmark data,

nd then utilized to delineate the relative significance of PTFE
ontent and compression on the capillary pressure of this class
f DM materials, within the range of tested parameters.

. Method of approach

.1. Experimental approach and data description

SGL 24 series (SIGRACET® gas diffusion layers) carbon
aper DMs, namely SGL 24BC (5% PTFE), SGL 24CC (10%
TFE) and SGL 24DC (20% PTFE) were utilized in the bench-
arking experiments [6–8]. The tested DM samples are treated
ith PTFE (hydrophobic agent) from 5 to 20 wt.% of total, which

s in a typical hydrophobic treatment range preferred in conven-
ional fuel cell applications. The base macro-porous substrate of
he tested carbon paper DM samples is coated with a 50 �m thin

icro-porous layer (MPL) of carbon black mixed with PTFE. In
erms of hydrophobicity of the MPL, it was found in Ref. [6] and
y Gostick et al. [29] that the micro-porous layer contains con-
iderably fewer hydrophilic pores; therefore it is almost exclu-
ively hydrophobic in nature. However, the exact value of the
TFE treatment during the processing of this thin micro-porous

ayer has not been publicly disclosed by the manufacturer. The
aterial properties of the tested composite DM samples, as

upplied by the manufacturer, are provided in Table 1.
To date, different techniques [4,30,31] have been used

or measurement of the capillary saturation behavior of the
uel cell DM. Lin and Nguyen [4] measured the capil-
ary pressure–saturation using a volume displacement method,
hereas Acosta et al. [30] determined the imbibition and
rainage curves via a mercury intrusion technique. Recently,
airweather et al. [31] has reported a micro-fluidic device spe-
ially designed to measure the capillary pressure–saturation

urves of the fuel cell DM during liquid and gas intrusion. In
his study, a new technique, the method of standard porosime-
ry (MSP), was employed to measure the desired transport
arameters such as capillary pressure, saturation, pore size, and

) (macro-substrate) Porosity Permeability (cm3 cm−2 s−1)

0.76 0.60
0.75 0.60
0.75 0.45

s of DMs (i.e., SGL 24 Series) have been utilized in benchmarking experiments
ses of these materials. Note that the values of porosity, permeability, and PTFE
l diffusion media substrate (i.e., macro-DM without MPL).
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ydrophobic and hydrophilic porosity distribution. The use of
his technique to measure the desired capillary transport prop-
rties of the fuel cell DM has been also reported by Gostick
t al. [29]. The MSP is a reliable and established technique
sed for acquiring the necessary data regarding the capillary
ressure–saturation behavior of porous materials [32]. This tech-
ique is based on a capillary equilibrium process and developed
y Porotech Ltd. In these experiments, the DM samples were
laced in capillary contact between two standard samples hav-
ng a known capillary pressure–saturation curve [32]. At each
quilibrium the corresponding capillary pressure and satura-
ion values of the tested DM samples were measured based on
he known capillary pressure–saturation characteristics of the
tandard samples [32]. Different liquids (de-ionized water and
ctane) were utilized as working fluids to evaluate the mixed
ettability characteristics of DMs samples over a set of different

ompressions and PTFE loadings.
When MSP technique is compared with the traditional

ercury intrusion porosimetry (MIP), mercury intrusion
orosimetry is limited in that it is incapable of distinguishing
he hydrophobic and hydrophilic pore distribution (dual pore
etwork), and requires high pressures which can lead to a sub-
tantial deformation of the porous fuel cell DM structure [32].
hese limitations are directly eliminated with the use of MSP.
ince the MSP technique is based on the natural capillary equi-

ibrium concept, the measurement with this technique does not
equire any external pressure. In addition, MSP enables pre-
ise measurements over a large range of pore sizes of different
aterials including soft or frail materials under different com-

ression and temperatures [32]. A detailed description of this
echnique and the measured specific morphological character-
stics for the tested DM samples are provided in Ref. [32] and
6–8], respectively.

The benchmarking experiments were performed for the DM
amples given in Table 1 under different levels of compression
oadings, i.e., 0, 0.6 and 1.4 MPa to capture the corresponding
hanges in the pore configuration and the transport properties of
he tested DM samples (i.e., capillary pressure, saturation, poros-
ty, bi-modal pore distribution and pore size). The measured
apillary pressure data were compiled in a database and then
ategorized corresponding to the measured saturation, PTFE
ontent of the DM and the operating compression. While MSP
an not fully characterize the imbibition/drainage cycling (hys-
eresis effect) which the fuel cell DM could be exposed to under
ynamic conditions, this technique is capable of measuring the
rainage capillary pressure–saturation curves of the tested fuel
ell DM samples. The capillary drainage flow characteristics of
he hydrophobic pore network captured by the MSP technique
re considered essential, since the hydrophobic pores form the
ow pathways (conduits) for the liquid water to diffuse through

he DM.

.2. Neural network design and training
A feed-forward error back propagation neural network has
een constructed for this study. The architecture of ANN consists
f a three-layered network equipped with the tangent-sigmoid

o
p
e
i

r Sources 176 (2008) 191–199 193

nd log-sigmoid activation functions in hidden layers and a lin-
ar transfer function in the output layer to capture the highly
on-linear relationship between the input and output parameters.
he optimum number of neurons in the hidden layers has been
etermined based on a trial-and-error approach. A total num-
er of 30 neurons, 10 neurons in each layer, have been found
o be most suitable neuron configuration for the present ANN
attern. The input layer has been configured to include four
orrelated input parameters based on the non-wetting phase sat-
ration, the compression pressure and the PTFE content of the
M, whereas the output layer is designed for one parameter, “the

apillary pressure”, which is a governing parameter for the capil-
ary transport mechanism in DM. Note that the effects of relative
nd intrinsic permeability are also important for fully describ-
ng the capillary transport within the porous fuel cell DM, but
re beyond the scope of this study. As noted previously, when
he capillary-induced transport in fuel cell DM is analyzed, the
riving force is created by the local capillary pressure gradient,
hich is a strong function of water saturation, pore wettability

PTFE effect) and pore size (compression effect). Therefore, in
his study, the main focus is placed on predicting the capillary
ressure as a function of these specified parameters (i.e., satu-
ation, PTFE content and fuel cell compression pressure). The
ethod of approach and the schematic of the proposed network

tructure are presented in Fig. 1.
The connections between the sub-layers of the present neu-

al network are represented by the weights or so-called synaptic
onnections, which are calibrated by feeding the network with
suitable set of training data. This supervised training mode

llows the network to modify the connection weights and learn
he intricate representation of the specified input parameters with
espect to the desired outputs [27]. In the present feed-forward
NN model, the information supplied by the input parameters
ows through the forward direction from input nodes to the
utput node, while the transferred information is systematically
djusted by the assigned weights. For each input-data set, the
ssociated error has been calculated and then back propagated
hrough the network layers to continuously update the weights.
fter performing sufficient cycle of supervised training, the
etwork has achieved the ability to identify the appropriate
nput–output connections and an optimum match with the output
ata has been obtained.

.3. Network validation

A total of 340 data sets were utilized in the training and test-
ng phase of the present ANN model. Among these data set, 290
ata sets were randomly chosen and implemented as a training
et, while the remaining 50 data sets were utilized as a test set
or cross-validation to improve the learning process. During the
upervised training process, the associated learning error rate
mean-squared error) was minimized by increasing the num-
er of training epochs (cycles). However, an optimal number

f training epochs need to be determined in order to avoid any
ossible overtraining of the network. A total number of 3750
pochs were determined to be the optimum number of train-
ng cycles for the present ANN structure and the corresponding
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ig. 1. (a) Method of approach including: MSP experiments, testing conditio
etwork architecture designed for this study.

ean-squared error (relative error between the network output
nd target value) was found to be 3.4 × 10−8 at the end of 3750
raining epochs. Fig. 2 shows the training epoch cycles versus
he calculated mean squared error of the supervised training
nd the comparison of input benchmark data and corresponding
NN predictions for the training process. After the best learning
erformance was obtained with the specified training scheme,
detailed comparison of the experimental data with the ANN
redictions based on discrete input data set (different than the
ata set used in training process) was performed for the tested
M samples to evaluate the prediction quality of the designed
eural network.

t
p
o
t

d tested DM samples [6–8] and (b) the schematic of the feed-forward neural

Fig. 3a shows the measured and ANN prediction of capillary
ressure versus non-wetting phase saturation for the DM sam-
les SGL 24BC (5 wt.% of PTFE) and SGL 24DC (20 wt.% of
TFE) under no compression. Recalling that the benchmark data
ere generated for the DM samples coated with micro-porous

ayer, the nature of the capillary pressure–saturation curves
hown in Fig. 3 exhibits a continuous “S” shape, indicating the
ighly non-linear relationship between the capillary pressure and

he saturation of the tested bi-layered DM samples. The ANN
redictions appear to successfully follow the complex shape
f the measured capillary pressure within an average uncer-
ainty of ±5.1% of the measured data over the entire saturation



Power Sources 176 (2008) 191–199 195

d
c
c
o
D
t
p
a
p
m
i
i
m
c
h

2

d
r
f
p
p
d
a
d
t
t
o
e
s
s
t
t

P

K

43s3
n

s3
nw

]
3.7

w
p
p
p
t
T
s
b
i
m

n
a

F
v
a

s
t
c
i
t
i
g
s

a
o
b
t
e
m
t
s

E.C. Kumbur et al. / Journal of

omain (0 < snw < 1). This indicates that the designed network
an accurately capture the corresponding change in the measured
apillary pressures in response to the increase in PTFE content
f the DM. The comparison was also performed for the tested
M samples under different compressions. Fig. 3b represents

he comparison of measured capillary pressure and the ANN
rediction for SGL 24BC (20 wt.% of PTFE) DM exposed to 0
nd 1.4 MPa compression (two measurement boundaries). The
resent ANN model successfully performs the necessary adjust-
ents to predict the capillary pressure in response to the change

n compression, thereby precisely capturing the measured cap-
llary pressures within an average uncertainty of ±4.8% of the

easured data in the entire saturation range, even in the high
apillary pressure zone (snw > 0.7) which is governed by the
ydrophobic micro-porous layer [3–5] (Fig. 3b).

.4. Empirical correlation and ANN implementation

Recently, our group has published three papers [6–8] that are
evoted to developing a validated capillary pressure–saturation
elationship (for drainage in hydrophobic pores) appropriate
or the tested fuel cell DM materials. The unified capillary
ressure–saturation correlation presented in the final part of this
aper series [8] was deduced from the same extensive benchmark
ata that has also been used in this study to train the designed
rtificial neural network. In our previous study [8], a multi-
imensional linear regression model was employed to determine
he best polynomial fit that correlates the capillary pressure with
he relevant non-dimensionalized experimental parameters. In
rder to improve the precision of the empirical correlation and
liminate the potential uncertainty associated with the complex
hape of the capillary pressure–saturation curves, the overall
aturation domain was divided into three regions. The charac-
eristic capillary pressure–saturation equation derived for these
ested DM samples was suggested as follows [8]:

C = (293/T )6γ(T )︸ ︷︷ ︸
Temperature effect

20.4C

√
εc

k︸ ︷︷ ︸
Compression effect

K(Snw)︸ ︷︷ ︸
Mixed wettability

(1)

(s) =

⎧⎪⎨
⎪⎩

(wt.%)
[
0.0469 − 0.00152(wt.%) − 0.0406s2

nw + 0.1

(wt.%)
[
1.534 − 0.0293(wt.%) − 12.68s2

nw + 18.824

(wt.%)
[
1.7 − 0.0324(wt.%) − 14.1s2

nw + 20.9s3
nw

] +
here C, εc, k, and γ represent the compression pressure, com-
ressed porosity, absolute permeability and surface tension. The
arameters in K(snw) namely; (wt.%) and snw are PTFE weight
ercentage and non-wetting liquid saturation, respectively. Note
hat the porous media of interest herein is a composite structure.
he capillary pressure–saturation curves of the DM macro-
ubstrate (without MPL) can be extracted from the overall
ehavior of the composite structure by using the correspond-
ng the pore size distribution and porosities of the macro- and
icro-substrate (MPL), as also discussed in Refs. [6–8,29].
As shown in Eq. (1), the given empirical correlation is highly

on-linear, introducing additional complexity when used in an
dvanced computational model. As also noted in the introduction

a
c
o
o

w

] + 0.0561 ln snw 0 < snw ≤ 0.50

+ 3.416 ln snw 0.50 < snw ≤ 0.65

9 ln snw 0.65 < snw < 1.00

ig. 2. (a) Training epoch cycles vs. calculated mean square error of the super-
ised training for the designed ANN and (b) comparison of actual input data
nd corresponding ANN predictions for the training data set.

ection, existing fuel cell models [33,34] are already computa-
ionally complex, and somewhat limited by assumptions and
orrelations. Moreover, these models are mostly constructed by
solating a certain physical mechanism from the overall complex
ransport scheme to avoid additional mathematical complex-
ty. There is still too much uncertainty involved to achieve the
oal of a completely predictive whole-cell multi-phase tran-
ient model. In addition, when the design and optimization

re considered from a manufacturer’s perspective, there are
ther parameters such as material properties, application type,
inder and fiber type, labor and manufacturing cost that need
o be accounted for in the computational framework. How-
ver, identifying the relevant physical connections between these
anufacturing variables and the other relevant transport proper-

ies is extremely difficult, and complicates the task of designing
uch a tool based on a conventional CFD model.

As such, this study is devoted to introducing an alternative

pproach based on artificial neural network that can effectively
orrelate all these complex variable in one domain in the absence
f physical connections [27,28]. As a first step of development
f such a design tool, we have analyzed the effectiveness of
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for all saturations, however it exhibits relatively higher increase
for high saturations (i.e., snw = 0.3 and 0.4). In other words,
the sensitivity of the capillary pressure on the hydrophobicity
ig. 3. Comparison of experimental data [6–8] and ANN predictions for: (a)
GL 24BC (5% PTFE) and SGL 24DC (20% PTFE) under no compression and
b) SGL 24DC (20% PTFE) under no compression and 1.4 MPa compression.

mplementation of ANN to characterize the capillary transport
f the fuel cell DM.

. Results and discussions

The well-known limitation of the ANN system is its insuf-
cient capability of performing extrapolations [27,28]. Since

he learning mechanism is achieved by training the network
ith the specified data set, the neural network can only rep-

esent the characteristic patterns of the given data points. When
he data point of interest is beyond the range of original train-
ng data set, the response (prediction) of the trained network
xhibits unpredictable performance, yielding significantly low
ccuracy. In order to minimize the impact of this limitation, the
enchmarking experiments [6–8] have been performed at well-
esigned test conditions, which cover the typical hydrophobic
reatment range of the fuel cell DM (5–20 wt.% of PTFE) and
he assembly compression pressure range (0–1.4 MPa) typically
ncountered in fuel cell applications. Therefore, recalling that
he experiments described herein were performed at 0, 0.6 and
.4 MPa for the DM samples treated with different PTFE con-
ent (5, 10 and 20 wt.%), in the present study, the main effort
s focused on evaluating the relative significance of PTFE con-

ent and compression of the DM on the capillary pressure at the
ntermediate testing conditions within the range of tested param-
ters (i.e., 5% < PTFE < 20% and 0 < C < 1.4 MPa), in which the
xperimental data are not available.

F
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r Sources 176 (2008) 191–199

.1. Degree of mixed wettability

The degree of PTFE loading in DM plays a deterministic role
n the capillary transport mechanism, since any increase in PTFE
oading facilities the water removal rate from the pores, therefore
eading to a considerable reduction in the water retention (water
torage) capacity of the DM. In order to elucidate the relative
ignificance of PTFE content, the designed ANN was simulated
o predict the capillary pressure as a function of PTFE loading of
he DM at different saturations. Fig. 4 shows the predicted cap-
llary pressure versus % PTFE content of the DM at different
aturations (i.e., 0.1, 0.2, 0.3 and 0.4) under two different com-
ressions, namely 0.3 MPa and 0.9 MPa (i.e., the intermediate
onditions for which the experimental data are not available).
s seen in both Fig. 4a and b, the predicted capillary pressure

ollows an increasing trend with an increase in PTFE content
ig. 4. ANN prediction of capillary pressure vs. % PTFE content of DM at
ifferent saturations: (a) under 0.3 MPa compression and (b) under 0.9 MPa
ompression.
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ig. 5. ANN prediction of capillary pressure vs. % PTFE content of DM under
ifferent compressions (intermediate conditions for which the experimental data
re not available) at a constant saturation of: (a) 0.1 and (b) 0.3.

ppears to increase with saturation, in a good agreement with
he experimental observations presented in Refs. [6–8]. This can
e attributed to the strong dependence of capillary pressure on
he local water content of the pore and the hydrophobicity of the
ore matrix. Physically, at pore level, any increase in the liquid
aturation leads to an increase in the liquid pressure, which is
irectly proportional to the capillary pressure. In addition, ren-
ering the pore surface more hydrophobic distorts the molecular
orce balance at the line of contact, forcing the liquid water to
ove towards an unstable state, which in turn, leads to a higher

apillary pressure within the pore.

.2. Compression loading

The designed ANN algorithm was utilized to delineate
he response of the capillary pressure to any change in the
ompression pressure applied on the DM. Fig. 5 shows the
redicted capillary pressure versus % PTFE content of the
M at constant saturations (snw = 0.1 and snw = 0.3) under
ifferent compression conditions ranging from 0 to 1.4 MPa
ith an increment of 0.3 MPa (i.e., the intermediate condi-

ions for which the experimental data are not available). The
NN simulations reveal that for a given PTFE loading, the

apillary pressure is prone to increase in parallel with an

ncrease in compression. The increase in capillary pressure
ith compression can be attributed to the corresponding reduc-

ion in pore size, which can be explained through the Young–
aplace theorem. The Young–Laplace theorem (Eq. (2)) corre-
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ates the capillary pressure for a cylindrical pore in terms of pore
adius, surface tension and contact angle:

C = 2γ cos θ

r
(2)

here PC, γ , θ and r represent the capillary pressure, surface
ension, contact angle and pore radius, respectively. Based on the
heoretical description given in Eq. (2), applying compression
n the DM reduces the available pore volume and consequently
ecreases the pore radius, therefore leading to a higher capillary
ressure.

One other observation that can be drawn from Fig. 5 is that
he increase in capillary pressure with compression exhibits
issimilar behaviors in different compression ranges for dif-
erent saturation cases. For the low saturation case (snw = 0.1)
s shown in Fig. 5a, the capillary pressure appears to increase
lmost linearly with compression (diminishing importance) for
ny specified PTFE content within the simulated compression
ange (from 0 to 1.4 MPa). However, for the higher saturation
ase (snw = 0.3), the increase in capillary pressure with com-
ression is more pronounced between an uncompressed and
.6 MPa compression condition, especially for DMs having %
TFE content higher than 10%. Any further increase in com-
ression pressure from 0.6 to 1.4 MPa seems to have relatively
ess effect on the predicted capillary pressure (Fig. 5b), which is
n good agreement with our previous experimental observations
6–8].

As shown in Fig. 5b, for the DM coated with 15% PTFE,
he predicted capillary pressure exhibits a 26% increase with
n increase in compression from 0 to 0.6 MPa, whereas a 7%
ncrease of the capillary pressure is predicted as the compres-
ion is further increased from 0.6 to 1.4 MPa. This behavior can
e linked to the relatively higher spread out of the hydrophilic
ites compared to the hydrophobic ones within this compression
ange. Any further increase in compression from 0.6 MPa seems
o promote the dispersion of more hydrophilic sites, producing
igher hydrophilic surface area. As a result, the expansion of
he hydrophilic sites with compression enhances the hydrophilic
haracteristic of the DM, impeding the increase in capillary pres-
ure within the pore matrix, which is in good agreement with
he observations reported by Bazylak et al. [16].

.3. PTFE and compression: coupled effect

As described in previous sections, both PTFE loading of the
M and compression have strong influences on the capillary
ressure. However, the engineering consequences of increas-
ng PTFE content and compression should be systematically
ptimized in order to minimize the additional losses introduced
y these parameters. For that purpose, the relative significance
f these parameters on the capillary transport characteristics of
he DM was investigated. The present neural network was uti-
ized to determine the capillary pressure as a function of PTFE

oading and compression pressure. Fig. 6 depicts the capillary
ressure predictions of the ANN simulations as a function of
ompression pressure at different PTFE loadings for a specified
aturation (snw = 0.3). As seen from Fig. 6, the effect of com-
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ig. 6. ANN prediction of capillary pressure vs. compression pressure of DMs
reated with different PTFE loadings at constant saturation of 0.3.

ression on the capillary pressure is observed to be amplified
ith an increase in PTFE loading of the DM. This suggests

hat from capillary transport perspective, tailoring the DM with
igher PTFE loading and applying high compression would lead
o a higher capillary pressure at a given saturation, therefore pro-

oting the liquid water transport within the pores of the DM.
owever, in terms of system efficiency, increasing PTFE load-

ng of the DM would introduce an additional electrical loss, and
pplying high compression may cause permanent deformation,
herefore facilitating the degradation mechanism, which is not
esirable in terms of longevity and durability.

. Conclusions

An artificial neural network was designed and trained
ith the benchmark data generated from the capillary
ressure–saturation measurements [3–5] of SGL 24 series car-
on paper DMs treated with different PTFE undergoing various
ompression loadings. The detailed comparison of the ANN
redictions with the experimental data was performed. The
esults confirm that ANN predictions are consistent with those
btained from experimental analysis [6–8], yielding an average
ncertainty of ±5.1% of the measured data. After performing
alidation, the present neural network algorithm was utilized
o predict the response of the change in capillary pressure of
he DM as a function of PTFE loading and compression at
ntermediate conditions, where the experimental data are not
vailable.

The ANN simulations show that the capillary pressure is
rone to increase in parallel with the PTFE loading of the DM
nd the applied compression pressure, especially within the
ompression range of 0–0.6 MPa. Any further increase in com-
ression above 0.6 MPa appears to have relatively less impact
n the capillary pressure due to the relatively higher dispersion
f the hydrophilic sites within the compression range from 0.6
o 1.4 MPa. Furthermore, any increase in hydrophobicity of the

M is found to amplify the compression effect, yielding a higher

apillary pressure, possibly because of the reduction in effec-
ive pore size and enhanced molecular imbalance at the phase
nterface.

[

[
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The artificial intelligence model presented herein can be fur-
her extended into a more detailed design algorithm that couples
he DM internal architecture with the cell performance, manu-
acturer variables and operating conditions as more benchmark
ata are available. Such a tool can potentially reduce the number
f experiments required and provide improved means of select-
ng the optimum electrode configurations suitable for different
uel cell operations. Our team is rapidly expanding the existing
atabase. The development of an advanced design tool based on
his framework is ongoing work in our laboratory and will be
eported in subsequent publications.
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